Aspects of methane flow from sediment through emergent cattail (Typha latifolia) plants

TitleAspects of methane flow from sediment through emergent cattail (Typha latifolia) plants
Publication TypeJournal Article
Year of Publication1998
AuthorsYavitt, JB, Knapp, AK
JournalNew Phytologist
Volume139
Pagination495 -503
Accession NumberKNZ00670
Abstract

We measured the flow of methane in Typha latifolia L. (cattail)-dominated wetlands from microbial production in anoxic sediment into, through, and out of emergent T. latifolia shoots (i.e. plant transport). The purpose was to identify key environmental and plant factors that might affect rates of methane efflux from wetlands to the Earth's atmosphere. Methane accumulated in leafy T. latifolia shoots overnight, reaching concentrations up to 10000 μl l−1 (vs. atmospheric concentrations <4 μl l−1), suggesting that lower stomatal conductance at night limits methane efflux from the plant into ambient air. Daytime light and (or) lower atmospheric humidity that induce convective gas flow through the plant coincided with (a) an increase in the rate of methane efflux from T. latifolia leaves to ambient air (from <0·1 to >2·0 μmol m−2 (leaf) s−1) and (b) a decrease in shoot methane concentration to <70 μl l−1. Very short fluctuation in stomatal conductance during the day did not affect the methane efflux rate unless, possibly, the rate of photosynthesis decreased. A strong relationship between the maximum daily rate of methane efflux and shoot methane concentration (measured before the onset of convective gas flow) suggests T. latifolia plants behave like a capacitor (filling with methane at night, emitting the stored methane during the day). Experimentally cutting leaves (to prevent pressurization) reduced plant capacitance for methane.

DOI10.1046/j.1469-8137.1998.00210.x